Note

ON A NEW "CLASSICAL" METHOD TO EVALUATE NON-ISOTHERMAL KINETIC PARAMETERS

E. URBANOVICI and E. SEGAL

Chair of Physical Chemistry and Electrochemical Technology, Faculty of Chemical Engineering, Polytechnical Institute of Bucharest, Bulevardul Republicii 13, Bucharest (Romania)

(Received 10 March 1986)

In a previous paper [1] we described a classical method to evaluate non-isothermal kinetic parameters, using integration over small ranges of the variables [2] and only one heating rate. Following our research, i.e. keeping the classical framework which means A = const, E = const, and $f(\alpha)$ does not change its form for all the α values, a new method to evaluate the non-isothermal kinetic parameters was derived. The new features of the method with respect to the old one [1] are:

(1) owing to the dependence of the heating rate on α , the method uses local heating rates;

(2) to determine the values of the non-isothermal kinetic parameters as accurately as possible an iterative procedure is used.

Although the conversion function $f(\alpha) = (1 - \alpha)^n$ was used, the method is easy to extend to other conversion functions.

ITERATIVE METHOD TO EVALUATE THE NON-ISOTHERMAL KINETIC PARAM-ETERS

Starting from the fundamental equation of non-isothermal kinetics [3]:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{A}{\beta} f(\alpha) \mathrm{e}^{-E/RT} \tag{1}$$

by integration over the closed range $\alpha \in [\alpha_i, \alpha_k]$ it turns out that

$$\int_{\alpha_i}^{\alpha_k} \frac{\mathrm{d}\alpha}{f(\alpha)} = \frac{A}{\beta_{ik}} \int_{T_i}^{T_k} \mathrm{e}^{-E/RT} \,\mathrm{d}T \tag{2}$$

where β_{ik} is the heating rate corresponding to the α range $\alpha \in [\alpha_i, \alpha_k]$, i.e.

$$\beta_{ik} = \frac{T_k - T_i}{t_k - t_i} \tag{3}$$

0040-6031/86/\$03.50 © 1986 Elsevier Science Publishers B.V.

For $f(\alpha) = (1 - \alpha)^n$, using the average theorem [4] to operate the integrations in (2) one gets:

$$\frac{\alpha_k - \alpha_i}{\left(1 - \alpha_{ik}\right)^n} = \frac{A}{\beta_{ik}} (T_k - T_i) e^{-E/RT_{ik}}$$
(4)

with $\alpha_{ik} \in [\alpha_i, \alpha_k]$ and $T_{ik} \in [T_i, T_k]$.

By taking logarithms of eqn. (4) with β_{ik} given by (3) it turns out that:

$$\log A + n \log(1 - \alpha_{ik}) - \frac{E}{2.303RT_{ik}} = \log \frac{\alpha_k - \alpha_i}{t_k - t_i}$$
(5)

The problem is how to evaluate α_{ik} and T_{ik} , the values of A, n and E being unknown.

Let us consider four values of the conversion degree, α_1 , α_2 , α_3 and α_4 , with the following pairings:

$$\overrightarrow{\alpha_1 \alpha_2 \alpha_3 \alpha_4} (\alpha_1 < \alpha_2 < \alpha_3 < \alpha_4)$$

These values and pairing enable us to write a system of three equations like (5) whose solutions are A, n and E.

It is recommended that the values α_1 , α_2 , α_3 and α_4 should cover almost all the α range as, for instance:

$$\alpha_1 = 0.1$$
 $\alpha_2 = 0.3$ $\alpha_3 = 0.6$ $\alpha_4 = 0.9$
 $\Delta \alpha_{ik} = \alpha_k - \alpha_i \le 0.3 - 0.4$

and

$$\Delta T_{ik} = T_k - T_i \in (4-5 \text{ K}, 15-20 \text{ K})$$

As a first approximation (zero order approximation) α_{ik} and T_{ik} will be taken at the middle of their ranges, i.e.

$$\alpha_{\iota k}^{(0)} = \frac{\alpha_{\iota} + \alpha_{k}}{2} \tag{6}$$

$$T_{ik}^{(0)} = \frac{T_i + T_k}{2} \tag{7}$$

By introducing the values $\alpha_{12}^{(0)}$, $\alpha_{23}^{(0)}$, $\alpha_{34}^{(0)}$, $T_{12}^{(0)}$, $T_{23}^{(0)}$ and $T_{34}^{(0)}$ into the above mentioned system and solving it one gets the values of $A^{(0)}$, $n^{(0)}$ and $E^{(0)}$. These values can be used to calculate the integrals $\int_{\alpha_{i}}^{\alpha_{k}} d\alpha/(1-\alpha)^{n^{(0)}}$ and

 $\int_{T_i}^{T_k} e^{-E^{(0)}/RT} dT$ (this one by a numerical procedure) and thus to evaluate $\alpha_{tk}^{(1)}$ and $T_{tk}^{(1)}$ from the equations:

$$\int_{\alpha_{i}}^{\alpha_{k}} \frac{\mathrm{d}\alpha}{\left(1-\alpha\right)^{n^{(0)}}} = \frac{\alpha_{k}-\alpha_{i}}{\left(1-\alpha_{ik}^{(1)}\right)^{n^{(0)}}} \tag{8}$$

$$\int_{T_i}^{T_k} e^{-E^{(0)}/RT} dT = (T_k - T_i) e^{-E^{(0)}/RT_{ik}^{(1)}}$$
(9)

TABLE 1 Values of the r	ion-isother	mal kinetic paran	neters for the de	hydration	of CaC ₂ O ₄ ·H ₂ O				
$\beta(K \min^{-1})$	u ⁽⁰⁾	$\frac{E^{(0)}}{(\text{kcal mol}^{-1})}$	$A^{(0)}$ (s ⁻¹)	(1) ^W	$\frac{E^{(0)}}{(\text{kcal mol}^{-1})}$	$A^{(1)}$ (s ⁻¹)	n ⁽²⁾	$\frac{E^{(2)}}{(\text{kcal mol}^{-1})}$	A ⁽²⁾ (s ⁻¹)
$\beta_1 = 0.987$	0.514	27.39	7.62×10^{10}	0.445	27.02	4.71×10^{10}	0.448	27.05	4.87×10^{10}
$\beta_2 = 2.353$	0.462	23.14	4.87×10^{8}	0.403	22.84	3.32×10^{8}	0.405	22,86	3.40×10^{8}
$\beta_3 = 4.988$	0.576	21.65	1.04×10^{8}	0.501	21.37	7.12×10 ⁷	0.506	21.40	7.38×10 ⁷
$B_4 = 9.573$	0.644	20.01	1.93×10^7	0.554	19.63	1.20×10^{7}	0.560	19.67	1.25×10^7
any initial constraint of all should be addressed and any other states		and a provide state of the stat	and an and the second se	***	والمتحققة ومعقومه ومحتمد ومستعد والمعاطية والمحاطية والمحاطية والمحاطية والمحاطية والمحاطية والمحاطية والمحاطية				

With the values $\alpha_{ik}^{(1)}$ and $T_{ik}^{(1)}$ a new system can be written, whose solutions are $A^{(1)}$, $n^{(1)}$ and $E^{(1)}$.

By repeating the procedure after j iterations one gets:

$$\int_{\alpha_{i}}^{\alpha_{k}} \frac{\mathrm{d}\alpha}{\left(1-\alpha\right)^{n^{(i)}}} = \frac{\alpha_{k}-\alpha_{i}}{\left(1-\alpha_{ik}^{(j+1)}\right)^{n^{(j)}}} \tag{10}$$

$$\int_{T_{i}}^{T_{k}} e^{-E^{(i)}/RT} dT = (T_{k} - T_{i}) e^{-E^{(i)}/RT_{ik}^{(i+1)}}$$
(11)

From these equations the values $\alpha_{ik}^{(j+1)}$ and $T_{ik}^{(j+1)}$ can be obtained and used to write a new system of equations whose solutions are $A^{(j+1)}$, $n^{(j+1)}$ and $E^{(j+1)}$.

The iterative procedure continues until

$$|n^{(j+1)} - n^{(j)}| \le n \tag{12}$$

$$|E^{(j+1)} - E^{(j)}| \le \Delta E \tag{13}$$

 $|\log A^{(j+1)} - \log A^{(j)}| \le \log A \tag{14}$

Concerning the integrals from eqns. (8)-(11) one has to notice that:

$$\int_{\alpha_{i}}^{\alpha_{k}} \frac{\mathrm{d}\alpha}{\left(1-\alpha\right)^{n}} = \frac{\left(1-\alpha_{i}\right)^{1-n} \left(1-\alpha_{k}\right)^{1-n}}{1-n}$$
(15)

while for the integral $\int_{T_i}^{T_k} e^{-E/RT} dT$ a good approximation can be obtained using Simpson's method [5,6]:

$$\int_{T_i}^{T_k} e^{-E/RT} dT = \frac{T_k - T_i}{6} \left(e^{-E/RT_i} + 4e^{-E/RT_{i,k}^{(0)}} + e^{-E/RT_k} \right)$$
(16)

APPLICATIONS

The method was applied for the dehydration of $CaC_2O_4 \cdot H_2O$ with $\beta_1 = 0.987 \text{ K min}^{-1}$, $\beta_2 = 2.353 \text{ K min}^{-1}$, $\beta_3 = 4.988 \text{ K min}^{-1}$, $\beta_4 = 9.573 \text{ K min}^{-1}$, $\alpha_1 = 0.10$, $\alpha_2 = 0.30$, $\alpha_3 = 0.60$, $\alpha_4 = 0.90$. The experimental data are given in table 1 of a previous paper [7]. The results obtained for two iterations are listed in Table 1. According to these results two iterations are sufficient to get accurate values of the non-isothermal kinetic parameters. The values of the non-isothermal kinetic parameters obtained for β_2 , β_3 and β_4 are in fairly good agreement with those reported in the literature [8–10].

REFERENCES

- 1 E. Urbanovici and E. Segal, Thermochim. Acta, 78 (1984) 441.
- 2 E. Urbanovici and E. Segal. Thermochim. Acta, 94 (1985) 409.
- 3 D. Fătu and E. Segal, Introduction to Non-isothermal Kinetics. Publishing House of the Socialist Republic of Romania, Bucharest, 1983, p. 70 (in Romanian).
- 4 W. Rudin, Principles of Mathematical Analysis, Mir, Moscow, 1976, pp. 171, 151.
- 5 B.P. Demidovich and I.A. Maron, Computational Mathematics, Mir. Moscow, 1981, pp. 595, 597–599.
- 6 E. Urbanovici and E. Segal, Thermochim. Acta, 91 (1985) 383.
- 7 E. Urbanovici and E. Segal, Thermochim. Acta, 107 (1986) 339.
- 8 E.S. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.
- 9 A.W. Coats and J.P. Redfern, Nature (London), 201 (1964) 68.
- 10 E. Segal, Thermochim. Acta, 53 (1982) 365.